Topological drawings are representations of graphs in the plane, where vertices are represented by points, and edges by simple curves connecting the points. A drawing is simple if two edges intersect at most in a single point, either at a common endpoint or at a proper crossing. In this paper we study properties of maximal plane subgraphs of simple drawings $D_n$ of the complete graph $K_n$ on $n$ vertices. Our main structural result is that maximal plane subgraphs are 2-connected and what we call essentially 3-edge-connected. Besides, any maximal plane subgraph contains at least $\lceil 3n/2 \rceil$ edges. We also address the problem of obtaining a plane subgraph of $D_n$ with the maximum number of edges, proving that this problem is NP-complete. However, given a plane spanning connected subgraph of $D_n$, a maximum plane augmentation of this subgraph can be found in $O(n^3)$ time. As a side result, we also show that the problem of finding a largest compatible plane straight-line graph of two labeled point sets is NP-complete.
翻译:地形图画是平面图图的表示, 顶点代表顶点, 边缘代表简单的曲线连接点。 如果两个边缘在一个单一点、 共同端点或适当的交叉点上, 两个边缘交错最多一个点, 则画画简单图纸的最大平面子图的属性为$D_ n美元。 我们在本论文中研究简单图的最大平面子子图的属性$D_ n美元 美元, 完整的平面图为$K_ n美元。 我们的主要结构结果是, 最高平面子图有2个连接点, 基本上有3个顶端连接点。 此外, 任何最高平面子子图至少包含$\ lceil 3n/2\ rceil$ 边缘。 我们还解决了在最大边缘数中获取$D_ n 的平面子图的问题, 证明这个问题是已完成的。 但是, 鉴于一个连接的子平面图为$D_ n, 美元, 这个子图的最大平面增幅在$O (n3) 时间中。 此外, 我们还显示找到一个最相容的平面平面的平面图的平面图问题。