A set of vertices $S$ of a graph $G$ is {\em monophonically convex} if every induced path joining two vertices of $S$ is contained in $S$. The {\em monophonic convex hull of $S$}, $\langle S \rangle$, is the smallest monophonically convex set containing $S$. A set $S$ is {\em monophonic convexly independent} if $v \not\in \langle S - \{v\} \rangle$ for every $v \in S$. The {\em monophonic rank} of $G$ is the size of the largest monophonic convexly independent set of $G$. We present a characterization of the monophonic convexly independent sets. Using this result, we show how to determine the monophonic rank of graph classes like bipartite, cactus, triangle-free, and line graphs in polynomial time. Furthermore, we show that this parameter can computed in polynomial time for $1$-starlike graphs, i.e., for split graphs, and that its determination is $\NP$-complete for $k$-starlike graphs for any fixed $k \ge 2$, a subclass of chordal graphs. We also consider this problem on the graphs whose intersection graph of the maximal prime subgraphs is a tree.
翻译:如果每条引导路径加两条螺旋,每条螺旋的美元值为$S$,则每条螺旋等于$S美元。$G$是最大的单曲锥形板体的大小,$S$=langle S\rangle美元,这是包含$S美元的最小单曲锥形组。如果每条引导路径加两个螺旋的美元值为$S美元,那么,一套美元就是$的单曲锥形组。如果每条正弦S - ⁇ v ⁇ \\rangle$==$S - ⁇ v ⁇ \\\rrangle$=美元。 $G$$是最大的单曲锥形锥形锥形圆形板的大小。我们用这个结果来判断单曲形锥形锥形锥形的单曲形组合形组的大小, 任何正弦形的直径直线形类的直线形的直径直线形的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径。