This paper introduces a class of objects called decision rules that map infinite sequences of alternatives to a decision space. These objects can be used to model situations where a decision maker encounters alternatives in a sequence such as receiving recommendations. Within the class of decision rules, we study natural subclasses: stopping and uniform stopping rules. Our main result establishes the equivalence of these two subclasses of decision rules. Next, we introduce the notion of computability of decision rules using Turing machines and show that computable rules can be implemented using a simpler computational device: a finite automaton. We further show that computability of choice rules -- an important subclass of decision rules -- is implied by their continuity with respect to a natural topology. Finally, we introduce some natural heuristics in this framework and provide their behavioral characterization.
翻译:本文介绍一组名为“决定规则”的物体,这些物体绘制了决定空间的无限选择序列。这些物体可用于模拟决策者在接收建议等序列中遇到其他选择的情形。在决定规则的类别中,我们研究自然亚类:停止和统一停止规则。我们的主要结果确定了这两个决策规则子类的等同性。接下来,我们引入了使用图灵机器计算决定规则的可比较性概念,并表明可比较规则可以使用一个简单的计算装置执行:一个有限的自动图案。我们进一步表明,选择规则 -- -- 一个重要的决策规则子类 -- -- 的可比较性是因为它们在自然地形学方面的连续性所隐含的。最后,我们在此框架中引入了一些自然超自然超自然学,并提供其行为特征。