In this paper, we look at the problem of cross-domain few-shot classification that aims to learn a classifier from previously unseen classes and domains with few labeled samples. Recent approaches broadly solve this problem by parameterizing their few-shot classifiers with task-agnostic and task-specific weights where the former is typically learned on a large training set and the latter is dynamically predicted through an auxiliary network conditioned on a small support set. In this work, we focus on the estimation of the latter, and propose to learn task-specific weights from scratch directly on a small support set, in contrast to dynamically estimating them. In particular, through systematic analysis, we show that task-specific weights through parametric adapters in matrix form with residual connections to multiple intermediate layers of a backbone network significantly improves the performance of the state-of-the-art models in the Meta-Dataset benchmark with minor additional cost.


翻译:在本文中,我们审视了跨域的微小分类问题,其目的是从以前看不见的类别和领域中学习分类者,而以前没有贴标签的样本很少。最近采用的方法,通过对其少数碎片分类者进行参数化来广泛解决这一问题,这些分类者具有任务-不可知性和任务特有权重,前者通常在大型培训组中学习,而后者则通过一个附带网络动态预测,以小型支助组为条件。在这项工作中,我们侧重于对后者的估计,并提议直接从零到零学习任务特有权重,直接从一个小型支助组中学习,而不是用动态的估算。特别是,通过系统分析,我们通过矩阵式的参数调整器显示任务特有权重,与一个主干网的多个中间层有剩余连接。在Meta-Dataset基准中,最先进的模型的性能有很大改进,但成本小。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
专知会员服务
52+阅读 · 2020年9月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
元学习(meta learning) 最新进展综述论文
专知会员服务
275+阅读 · 2020年5月8日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
13+阅读 · 2020年4月12日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
13+阅读 · 2019年1月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
31+阅读 · 2021年3月29日
Arxiv
13+阅读 · 2020年4月12日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
13+阅读 · 2019年1月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员