Palindromes are non-empty strings that read the same forward and backward. The problem of recognizing strings that can be represented as the concatenation of even-length palindromes, the concatenation of palindromes of length greater than one, and the concatenation of exactly $k$ palindromes was introduced in the seminal paper of Knuth, Morris, and Pratt [SIAM J. Comput., 1977]. In this work, we study the problem of recognizing so-called $k$-palindromic strings, which can be represented as the concatenation of exactly $k$ palindromes. It was shown that the problem is solvable in linear space and time [Rubinchik and Schur, MFCS'2020]. We aim to develop a sublinear-space solution, and show the following results: (1) First, we show a structural characterization of the set of all $k$-palindromic prefixes of a string by representing it as a union of a small number of highly structured string sets, called affine prefix sets. We show that the size of this representation is of the right asymptotic form by constructing an almost matching lower bound. (2) Secondly, we derive a read-only algorithm that, given a string $T$ of length $n$ and an integer $k$, computes a compact representation of the $i$-palindromic prefixes of $T$, for all $1 \le i \le k$. (3) Finally, we also give a read-only algorithm for computing the palindromic length of $T$, which is the smallest $\ell$ such that $T$ is $\ell$-palindromic, given that $\ell \le k$. The algorithms use $\mathcal O(n \cdot 6^{k^2} \cdot \log^k n)$ time and $\mathcal O(6^{k^2} \cdot \log^k n)$ space. Our work is the first step toward a streaming algorithm for the recognition of $k$-palindromic prefixes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员