To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.
翻译:为了检索更多相关、适当和有用的文件,请查询,通过文本查找关于该查询的线索至关重要。最近深层学习模式将任务视为术语级匹配问题,在文件中寻找精确或类似的查询模式。然而,我们争辩说,它们本质上是基于本地互动,并不概括于无处不在的非连续背景关系。在这项工作中,我们提议基于图形神经网络的新的相关性匹配模式,以利用文档级单词关系进行临时检索。除了本地互动外,我们还通过文字图表格式明确纳入术语的所有背景。匹配模式可以据此显示,以提供更准确的相关性分数。我们的方法大大超过两个ad-hoc基准的强基准。我们还实验性地将我们的模型与 BERT 进行比较,并在长文档上展示我们的ad-vantage。