Service robots are integrating more and more into our daily lives to help us with various tasks. In such environments, robots frequently face new objects while working in the environment and need to learn them in an open-ended fashion. Furthermore, such robots must be able to recognize a wide range of object categories. In this paper, we present a lifelong ensemble learning approach based on multiple representations to address the few-shot object recognition problem. In particular, we form ensemble methods based on deep representations and handcrafted 3D shape descriptors. To facilitate lifelong learning, each approach is equipped with a memory unit for storing and retrieving object information instantly. The proposed model is suitable for open-ended learning scenarios where the number of 3D object categories is not fixed and can grow over time. We have performed extensive sets of experiments to assess the performance of the proposed approach in offline, and open-ended scenarios. For the evaluation purpose, in addition to real object datasets, we generate a large synthetic household objects dataset consisting of 27000 views of 90 objects. Experimental results demonstrate the effectiveness of the proposed method on online few-shot 3D object recognition tasks, as well as its superior performance over the state-of-the-art open-ended learning approaches. Furthermore, our results show that while ensemble learning is modestly beneficial in offline settings, it is significantly beneficial in lifelong few-shot learning situations. Additionally, we demonstrated the effectiveness of our approach in both simulated and real-robot settings, where the robot rapidly learned new categories from limited examples.


翻译:服务机器人正在越来越多地融入我们的日常生活,以帮助我们完成各种任务。在这样的环境中,机器人经常在环境中工作时面对新的物体,需要以开放的方式学习。此外,这些机器人必须能够识别各种各样的物体类别。在本文件中,我们根据多个表达方式展示了终生的全套学习方法,以解决微小物体识别问题。特别是,我们根据深层表达方式和手工制作的3D形状描述器形成了共同方法。为了便利终生学习,每种方法都配备了存储和立即检索物体信息的记忆单位。提议的模型适合开放式学习情景,其中3D对象类别的数量没有固定,可以随着时间的推移而增长。我们进行了广泛的实验,以评估拟议方法在离线和开放式物体识别问题的绩效。除了真实的物体数据集之外,我们还从90个对象的27 000个背景中生成了大型合成的家用物体数据集。实验结果表明,拟议的方法在网上储存和检索对象信息方面的效力是有限的。 3D类的快速模型适用于开放式的开放式方法,同时在学习过程中展示了我们学习的高级目标的学习结果。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员