Expressive performance rendering (EPR) and automatic piano transcription (APT) are fundamental yet inverse tasks in music information retrieval: EPR generates expressive performances from symbolic scores, while APT recovers scores from performances. Despite their dual nature, prior work has addressed them independently. In this paper we propose a unified framework that jointly models EPR and APT by disentangling note-level score content and global performance style representations from both paired and unpaired data. Our framework is built on a transformer-based sequence-to-sequence architecture and is trained using only sequence-aligned data, without requiring fine-grained note-level alignment. To automate the rendering process while ensuring stylistic compatibility with the score, we introduce an independent diffusion-based performance style recommendation module that generates style embeddings directly from score content. This modular component supports both style transfer and flexible rendering across a range of expressive styles. Experimental results from both objective and subjective evaluations demonstrate that our framework achieves competitive performance on EPR and APT tasks, while enabling effective content-style disentanglement, reliable style transfer, and stylistically appropriate rendering. Demos are available at https://jointpianist.github.io/epr-apt/
翻译:暂无翻译