The most popular methods in AI-machine learning paradigm are mainly black boxes. This is why explanation of AI decisions is of emergency. Although dedicated explanation tools have been massively developed, the evaluation of their quality remains an open research question. In this paper, we the generalize the methodologies of evaluation of post-hoc explainers of CNNs' decisions in visual classification tasks with reference and no-reference based metrics. We apply them on our previously developed explainers (FEM, MLFEM), and popular Grad-CAM. The reference-based metrics are Pearson correlation coefficient and Similarity computed between the explanation map and its ground truth represented by a Gaze Fixation Density Map obtained with a psycho-visual experiment. As a no-reference metric we use stability metric, proposed by Alvarez-Melis and Jaakkola. We study its behaviour, consensus with reference-based metrics and show that in case of several kind of degradation on input images, this metric is in agreement with reference-based ones. Therefore it can be used for evaluation of the quality of explainers when the ground truth is not available.
翻译:AI-Mach学习模式中最受欢迎的方法主要是黑盒。这就是为什么对AI决定的解释是紧急的。尽管专门的解释工具已经大规模开发,但其质量评价仍然是一个开放的研究问题。在本文中,我们用参考和无参考基准的衡量标准,对CNN的视觉分类任务中决定的热后解释者的评价方法进行了普遍化。我们将其应用于我们以前开发的解释者(FEM、MLFEM)和流行的Grad-CAM。基于参考的衡量标准是Pearson相关系数和以心理-视觉实验获得的Gaze 固定密度地图为代表的解释地图及其地面真相所计算的相似性。作为一个不参照指标,我们使用Alvarez-Melis和Jaakkola提出的稳定性指标。我们研究其行为,与基于参考的衡量标准达成共识,并表明,如果输入图像出现几种类型的退化,该指标与基于参考的模型是一致的。因此,在没有地面真相时,可以用来评估解释者的质量。