The homogeneity, or more generally, the similarity between source domains and a target domain seems to be essential to a positive transfer learning. In practice, however, the similarity condition is difficult to check and is often violated. In this paper, instead of the popularly used similarity condition, a seeming similarity is introduced, which is defined by a non-orthogonality together with a smoothness. Such a condition is naturally satisfied under common situations and even implies the dissimilarity in some sense. Based on the seeming similarity together with an $L_2$-adjustment, a source-function weighted-transfer learning estimation (sw-TLE) is constructed. By source-function weighting, an adaptive transfer learning is achieved in the sense that it is applied to similar and dissimilar scenarios with a relatively high estimation efficiency. Particularly, under the case with homogenous source and target models, the sw-TLE even can be competitive with the full data estimator. The hidden relationship between the source-function weighting estimator and the James-Stein estimator is established as well, which reveals the structural reasonability of our methodology. Moreover, the strategy does apply to nonparametric and semiparametric models. The comprehensive simulation studies and real data analysis can illustrate that the new strategy is significantly better than the competitors.


翻译:源域和目标域之间的相似性,或更笼统地说,对于积极的转移学习来说,源域和目标域之间的相似性似乎至关重要。但在实践中,相似性条件难以核实,而且经常被违反。在本文件中,与普遍使用的相似性条件相反,引入了似乎相似的相似性,其定义是非同一性加上平滑性。在共同情况下,这种条件自然地得到满足,甚至意味着某种意义上的差异性。基于似乎与正转移学习的相似性,加上2美元调整,一种源函数加权转移学习估计(sw-TLE)是构建的。根据源功能加权估计(sw-TLE),适应性转移学习的实现,其意义在于它适用于类似和不同的情况,其估计效率相对较高。特别是,在同源和目标模型的情况下,Sw-TLEE甚至可以与全部数据估测者具有竞争力。根据源计算器计算重量的计算器和James-Sestorator 之间的隐藏关系是构建的。通过源函数加权加权加权估算,因此,采用新的结构分析是更精确的模型,这可以说明新的分析方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
12+阅读 · 2019年3月14日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员