Neural Radiance Field (NeRF) significantly degrades when only a limited number of views are available. To complement the lack of 3D information, depth-based models, such as DSNeRF and MonoSDF, explicitly assume the availability of accurate depth maps of multiple views. They linearly scale the accurate depth maps as supervision to guide the predicted depth of few-shot NeRFs. However, accurate depth maps are difficult and expensive to capture due to wide-range depth distances in the wild. In this work, we present a new Sparse-view NeRF (SparseNeRF) framework that exploits depth priors from real-world inaccurate observations. The inaccurate depth observations are either from pre-trained depth models or coarse depth maps of consumer-level depth sensors. Since coarse depth maps are not strictly scaled to the ground-truth depth maps, we propose a simple yet effective constraint, a local depth ranking method, on NeRFs such that the expected depth ranking of the NeRF is consistent with that of the coarse depth maps in local patches. To preserve the spatial continuity of the estimated depth of NeRF, we further propose a spatial continuity constraint to encourage the consistency of the expected depth continuity of NeRF with coarse depth maps. Surprisingly, with simple depth ranking constraints, SparseNeRF outperforms all state-of-the-art few-shot NeRF methods (including depth-based models) on standard LLFF and DTU datasets. Moreover, we collect a new dataset NVS-RGBD that contains real-world depth maps from Azure Kinect, ZED 2, and iPhone 13 Pro. Extensive experiments on NVS-RGBD dataset also validate the superiority and generalizability of SparseNeRF. Project page is available at https://sparsenerf.github.io/.


翻译:神经辐射场(NeRF)在视角数量有限的情况下表现显著下降。为了弥补缺乏的三维信息,基于深度的模型,如DSNeRF和MonoSDF,显式假设多个视角上准确深度图像的可用性。它们将准确的深度图像线性缩放并用作监督来引导少样本NeRF的深度预测。然而,由于野外范围深度距离广泛,准确的深度图像很难和昂贵地获取。在这项工作中,我们提出了一个新的稀疏视图NeRF(SparseNeRF)框架,它利用了来自真实世界不准确观测的深度先验知识。不准确的深度观测可以是来自预训练深度模型或消费者级深度传感器的粗略深度图。由于粗略的深度图并没有严格按照地面实况的深度图进行缩放,因此我们在NeRF上提出了一个简单而有效的约束条件,即局部深度排序方法,以使NeRF的预期深度排序与局部补丁中的粗略深度图一致。为了保持NeRF估计深度的空间连续性,我们提出了一个空间连续性约束,以鼓励NeRF的预期深度连续性与粗略深度图的一致性。令人惊讶的是,仅通过简单的深度排序约束,SparseNeRF在标准的LLFF和DTU数据集上超过了所有最先进的少样本NeRF方法(包括基于深度的模型)。此外,我们收集了一个新数据集NVS-RGBD,其中包含从Azure Kinect、ZED 2和iPhone 13 Pro获取的真实深度图。对NVS-RGBD数据集的广泛实验也验证了SparseNeRF的优越性和普适性。项目页面位于https://sparsenerf.github.io/。

0
下载
关闭预览

相关内容

【AAAI2023】FoPro:少样本引导的鲁棒维布监督原型学习
专知会员服务
13+阅读 · 2022年12月3日
【ACM MM2020】对偶注意力GAN语义图像合成
专知会员服务
35+阅读 · 2020年9月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】在CPU上进行实时无监督单目深度估计
泡泡机器人SLAM
17+阅读 · 2019年5月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员