The selection of initial parameter values for gradient-based optimization of deep neural networks is one of the most impactful hyperparameter choices in deep learning systems, affecting both convergence times and model performance. Yet despite significant empirical and theoretical analysis, relatively little has been proved about the concrete effects of different initialization schemes. In this work, we analyze the effect of initialization in deep linear networks, and provide for the first time a rigorous proof that drawing the initial weights from the orthogonal group speeds up convergence relative to the standard Gaussian initialization with iid weights. We show that for deep networks, the width needed for efficient convergence to a global minimum with orthogonal initializations is independent of the depth, whereas the width needed for efficient convergence with Gaussian initializations scales linearly in the depth. Our results demonstrate how the benefits of a good initialization can persist throughout learning, suggesting an explanation for the recent empirical successes found by initializing very deep non-linear networks according to the principle of dynamical isometry.


翻译:深神经网络基于梯度优化的初始参数值选择是深层学习系统中影响最大的超参数选择之一,既影响趋同时间,也影响模型性性能。然而,尽管进行了大量的经验和理论分析,但关于不同初始化计划的具体效果的证明相对较少。在这项工作中,我们分析了深线网络初始化的效果,并首次提供了严格的证据,证明从正向组合中提取初始权重的速度加快了与标准高斯初始化和iid重量相对的趋同速度。我们表明,对于深层网络而言,与正向初始化有效融合到全球最低程度所需的宽度是独立于深度的,而与高斯初始化线性尺度在深度上有效融合所需的宽度则是线性。我们的结果表明,良好的初始化的好处如何在整个学习过程中得以持续,为根据动态等量原则初始化非常深的非线性网络所发现的最新经验成功提供了解释。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员