A central goal in the cognitive sciences is the development of numerical models for mental representations of object concepts. This paper introduces Variational Interpretable Concept Embeddings (VICE), an approximate Bayesian method for embedding object concepts in a vector space using data collected from humans in an odd-one-out triplet task. VICE uses variational inference to obtain sparse, non-negative representations of object concepts with uncertainty estimates for the embedding values. These estimates are used to automatically select the dimensions that best explain the data. We derive a PAC learning bound for VICE that can be used to estimate generalization performance or determine sufficient sample size in experimental design. VICE rivals or outperforms its predecessor, SPoSE, at predicting human behavior in the odd-one-out triplet task. Furthermore, VICE's object representations are more reproducible and consistent across random initializations.
翻译:认知科学的一个中心目标是为物体概念的心理表现开发数字模型。本文件介绍了可解释概念嵌入的变式模型(VICE),这是一种利用从人类收集的奇异一出三重任务的数据将物体概念嵌入矢量空间的近似贝叶斯方法。 VICE使用变式推论获得稀疏、非负式的物体概念的表达方式,同时对嵌入值进行不确定性估计。这些估计用于自动选择能解释数据的维度。我们为VICE获取了一种PAC学习,可用于估计一般化性能或确定实验设计中的足够样本大小。VICE在预测奇异一出三重任务中的人类行为时,与前身SPOSE相对应或优于其前身SPOSE。此外,VICE的物体表达方式在随机初始化中更加可复制和一致。