The problem of learning a channel decoder is considered for two channel models. The first model is an additive noise channel whose noise distribution is unknown and nonparametric. The learner is provided with a fixed codebook and a dataset comprised of independent samples of the noise, and is required to select a precision matrix for a nearest neighbor decoder in terms of the Mahalanobis distance. The second model is a non-linear channel with additive white Gaussian noise and unknown channel transformation. The learner is provided with a fixed codebook and a dataset comprised of independent input-output samples of the channel, and is required to select a matrix for a nearest neighbor decoder with a linear kernel. For both models, the objective of maximizing the margin of the decoder is addressed. Accordingly, for each channel model, a regularized loss minimization problem with a codebook-related regularization term and hinge-like loss function is developed, which is inspired by the support vector machine paradigm for classification problems. Expected generalization error bounds for the error probability loss function are provided for both models, under optimal choice of the regularization parameter. For the additive noise channel, a theoretical guidance for choosing the training signal-to-noise ratio is proposed based on this bound. In addition, for the non-linear channel, a high probability uniform generalization error bound is provided for the hypothesis class. For each channel, a stochastic sub-gradient descent algorithm for solving the regularized loss minimization problem is proposed, and an optimization error bound is stated. The performance of the proposed algorithms is demonstrated through several examples.


翻译:学习频道解码器的问题被考虑用于两个频道模式。 第一个模式是添加噪音分布未知且不参数化的噪音添加频道。 向学习者提供固定代码和由独立噪音样本组成的数据集。 向学习者提供由噪音样本组成的固定代码和由独立声音样本组成的数据集, 并且需要为最近的邻居解码器选择精确矩阵, 并且需要从Mahalanobis 距离的角度为最近的代码器选择一个精确矩阵。 第二个模式是一个非线性通道, 配有添加白高尔西亚噪音和未知频道变换。 向学习者提供固定代码和由该频道独立输入输出样本组成的数据集。 需要为最近的邻居解码器选择一个带有线性内内内内内内内内内内内内核的解码器。 因此, 对于每个频道模式, 都开发一个固定化的损失最小化矩阵问题, 由支持矢量机机的分类问题模型模式来激励。 给两个模型的错误概率损失概率值的界限是, 在最优化的正规化参数参数参数中, 将一个基于升级的精度导路路段 。 向一般的精度 的精度 。 将显示的精度 的精度 的精度 的精度 度 度 的精度 的精度的精度 将精度 的精度的精度的精度的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月6日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员