We propose an efficient online kernel Cumulative Sum (CUSUM) method for change-point detection that utilizes the maximum over a set of kernel statistics to account for the unknown change-point location. Our approach exhibits increased sensitivity to small changes compared to existing methods, such as the Scan-B statistic, which corresponds to a non-parametric Shewhart chart-type procedure. We provide accurate analytic approximations for two key performance metrics: the Average Run Length (ARL) and Expected Detection Delay (EDD), which enable us to establish an optimal window length on the order of the logarithm of ARL to ensure minimal power loss relative to an oracle procedure with infinite memory. Such a finding parallels the classic result for window-limited Generalized Likelihood Ratio (GLR) procedure in parametric change-point detection literature. Moreover, we introduce a recursive calculation procedure for detection statistics to ensure constant computational and memory complexity, which is essential for online procedures. Through extensive experiments on simulated data and a real-world human activity dataset, we demonstrate the competitive performance of our method and validate our theoretical results.
翻译:我们提出了一种高效的在线核累积和(CUSUM)方法,用于变点检测,利用一组核统计量的最大值来考虑未知的变点位置。相比现有的方法,如Scan-B统计量(对应于一种非参数的Shewhart控制图类型的过程),我们的方法表现出了更高的灵敏度,对小的变化更加敏感。我们提供了两个关键性能指标的准确解析逼近:平均运行长度(ARL)和期望检测延迟(EDD),这使我们能够建立一个最优的窗口长度,其数量级为ARL的对数,以确保相对于具有无限内存的oracle过程的最小功率损失。这样的结果类似于参数化变点检测文献中窗口限制广义似然比(GLR)过程的经典结果。此外,我们引入了一种递归计算检测统计量的过程,以确保恒定的计算和内存复杂度,这对于在线过程至关重要。通过对模拟数据和真实的人类活动数据集的广泛实验,我们展示了我们的方法的竞争性能和验证了我们的理论结果。