Bandit and reinforcement learning (RL) problems can often be framed as optimization problems where the goal is to maximize average performance while having access only to stochastic estimates of the true gradient. Traditionally, stochastic optimization theory predicts that learning dynamics are governed by the curvature of the loss function and the noise of the gradient estimates. In this paper we demonstrate that this is not the case for bandit and RL problems. To allow our analysis to be interpreted in light of multi-step MDPs, we focus on techniques derived from stochastic optimization principles (e.g., natural policy gradient and EXP3) and we show that some standard assumptions from optimization theory are violated in these problems. We present theoretical results showing that, at least for bandit problems, curvature and noise are not sufficient to explain the learning dynamics and that seemingly innocuous choices like the baseline can determine whether an algorithm converges. These theoretical findings match our empirical evaluation, which we extend to multi-state MDPs.


翻译:强盗和强盗学习(RL)问题通常可以被描述为优化问题,在优化问题上,目标是最大限度地提高平均性能,同时只能获取真实梯度的随机估计。 传统上, 随机优化理论预测, 学习动态受损失函数曲线和梯度估计噪音的调节。 在本文中, 我们证明, 土匪和RL问题不属于这种情况。 为了能够根据多步MDP来解释我们的分析, 我们侧重于从随机优化原理( 如自然政策梯度和EXP3)中得出的技术, 我们发现, 优化理论的一些标准假设在这些问题上遭到了违反。 我们提出的理论结果显示, 至少对于强盗问题, 曲线和噪音不足以解释学习动态, 而像基线这样的看似无意义的选择可以决定算法是否趋同。 这些理论结论符合我们的经验评估, 我们将其推广到多州 MDP 。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月9日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员