The key of the out-of-distribution (OOD) generalization is to generalize invariance from training domains to target domains. The variance risk extrapolation (V-REx) is a practical OOD method, which depends on a domain-level regularization but lacks theoretical verifications about its motivation and utility. This article provides theoretical insights into V-REx by studying a variance-based regularizer. We propose Risk Variance Penalization (RVP), which slightly changes the regularization of V-REx but addresses the theory concerns about V-REx. We provide theoretical explanations and a theory-inspired tuning scheme for the regularization parameter of RVP. Our results point out that RVP discovers a robust predictor. Finally, we experimentally show that the proposed regularizer can find an invariant predictor under certain conditions.
翻译:分配外(OOD)一般化的关键是将从培训领域到目标领域的差异性概括化。差异风险外推法(V-REx)是一种实用的OOOD方法,它取决于域级的正规化,但缺乏对其动机和效用的理论核查。这一条通过研究基于差异的正规化器对V-REx提供了对V-REx的理论洞察力。我们提出了风险差异性处罚(RVP),它略微改变了V-REx的正规化,但解决了对V-REx的理论关切。我们为RVP的正规化参数提供了理论解释和理论启发的调整方案。我们的结果指出,RVP发现了一个强有力的预测器。最后,我们实验性地表明,拟议的正规化器在某些条件下可以找到一个变量预测器。