Adaptive systems -- such as a biological organism gaining survival advantage, an autonomous robot executing a functional task, or a motor protein transporting intracellular nutrients -- must model the regularities and stochasticity in their environments to take full advantage of thermodynamic resources. Analogously, but in a purely computational realm, machine learning algorithms estimate models to capture predictable structure and identify irrelevant noise in training data. This happens through optimization of performance metrics, such as model likelihood. If physically implemented, is there a sense in which computational models estimated through machine learning are physically preferred? We introduce the thermodynamic principle that work production is the most relevant performance metric for an adaptive physical agent and compare the results to the maximum-likelihood principle that guides machine learning. Within the class of physical agents that most efficiently harvest energy from their environment, we demonstrate that an efficient agent's model explicitly determines its architecture and how much useful work it harvests from the environment. We then show that selecting the maximum-work agent for given environmental data corresponds to finding the maximum-likelihood model. This establishes an equivalence between nonequilibrium thermodynamics and dynamic learning. In this way, work maximization emerges as an organizing principle that underlies learning in adaptive thermodynamic systems.


翻译:适应性系统 -- -- 例如生物生物机体获得生存优势,自主机器人执行功能任务,或含有细胞内营养素的马达蛋白 -- -- 必须模拟其环境中的规律性和随机性,以充分利用热力资源。模拟,但在纯粹的计算范围内,机器学习算法估计模型,以捕捉可预测的结构并确定培训数据中无关的噪音。这是通过优化性能衡量标准(如模型可能性)实现的。如果实际应用,那么通过机器学习估计的计算模型是否在物理上得到偏好?我们引入热力学原则,即工作生产是适应性物理剂最相关的性能衡量标准,并将结果与指导机器学习的最类似性能原则进行比较。在最高效地从环境中获取能源的物理物剂类别中,我们证明高效的物剂模型明确决定其结构以及它从环境中获取多少有用的工作。我们随后表明,选择给环境数据的最大工作代理物与找到最大类比模型是相同的。我们引入了热力学模型,这在机器学习过程中将结果和动态学习的最接近性能等等同起来。在一种适应性原则中,通过这种方式来组织一种适应性能学。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员