Many real-world problems can be represented as graph-based learning problems. In this paper, we propose a novel framework for learning spatial and attentional convolution neural networks on arbitrary graphs. Different from previous convolutional neural networks on graphs, we first design a motif-matching guided subgraph normalization method to capture neighborhood information. Then we implement subgraph-level self-attentional layers to learn different importances from different subgraphs to solve graph classification problems. Analogous to image-based attentional convolution networks that operate on locally connected and weighted regions of the input, we also extend graph normalization from one-dimensional node sequence to two-dimensional node grid by leveraging motif-matching, and design self-attentional layers without requiring any kinds of cost depending on prior knowledge of the graph structure. Our results on both bioinformatics and social network datasets show that we can significantly improve graph classification benchmarks over traditional graph kernel and existing deep models.
翻译:许多现实世界的问题可以作为基于图表的学习问题来代表。 在本文中, 我们提出了一个用于在任意图形上学习空间和注意力共变神经网络的新框架。 不同于以往在图表上的进化神经网络, 我们首先设计一个motif- 匹配引导子图解正常化方法来捕捉周边信息。 然后我们实施子图一级的自我注意层, 以学习不同子图的不同重要性来解决图形分类问题。 对在输入的本地连接和加权区域运行的基于图像的焦点共变网络进行模拟, 我们还通过利用 motif- 匹配, 将图形的标准化从一维节点序列扩大到二维节点网格, 并且设计自省层, 不需要任何费用, 取决于先前对图形结构的了解。 我们在生物信息和社会网络数据集上的结果显示, 我们可以大大改进传统图形内核和现有深度模型的图形分类基准。