The classic algorithm of Bodlaender and Kloks [J. Algorithms, 1996] solves the following problem in linear fixed-parameter time: given a tree decomposition of a graph of (possibly suboptimal) width k, compute an optimum-width tree decomposition of the graph. In this work, we prove that this problem can also be solved in mso in the following sense: for every positive integer k, there is an mso transduction from tree decompositions of width k to tree decompositions of optimum width. Together with our recent results [LICS 2016], this implies that for every k there exists an mso transduction which inputs a graph of treewidth k, and nondeterministically outputs its tree decomposition of optimum width. We also show that mso transductions can be implemented in linear fixed-parameter time, which enables us to derive the algorithmic result of Bodlaender and Kloks as a corollary of our main result.
翻译:Bodlaender 和 Kloks 的经典算法[J. Algorithms, 1996] 在线性固定参数时间中解决了下列问题: 树上对( 可能亚优) 宽 k 的图形进行分解, 计算图中的最佳宽度树分解。 在这项工作中, 我们证明, 这个问题也可以在 mso 中从以下意义上解决: 对于每个正整数 k 来说, 树上的宽度 k 到最佳宽度的树分解会有一个 mso 转换。 加上我们最近的结果[ LICS 2016], 这意味着对于每一个 k, 每个 k 都存在一个 mso 转导, 输入了树枝 K 的图, 和非非定式的输出 其树上的最佳宽度的分解。 我们还表明, mso 转 也可以在线性固定参数时间执行, 从而使我们能够得出 Bodlaender 和 Kloks 的算法结果, 作为我们主要结果的必然结果 。