We consider the numerical approximation of a sharp-interface model for two-phase flow, which is given by the incompressible Navier-Stokes equations in the bulk domain together with the classical interface conditions on the interface. We propose structure-preserving finite element methods for the model, meaning in particular that volume preservation and energy decay are satisfied on the discrete level. For the evolving fluid interface, we employ parametric finite element approximations that introduce an implicit tangential velocity to improve the quality of the interface mesh. For the two-phase Navier-Stokes equations, we consider two different approaches: an unfitted and a fitted finite element method, respectively. In the unfitted approach, the constructed method is based on an Eulerian weak formulation, while in the fitted approach a novel arbitrary Lagrangian-Eulerian (ALE) weak formulation is introduced. Using suitable discretizations of these two formulations, we introduce two finite element methods and prove their structure-preserving properties. Numerical results are presented to show the accuracy and efficiency of the introduced methods.
翻译:我们考虑了两阶段流的尖锐界面模型的数值近似值,该模型由散装域的不压缩纳维埃-斯托克方程式和界面上的经典界面条件共同提供。我们为模型提出了结构保留有限元素的方法,这特别意味着数量保护与能量衰减在离散水平上是满意的。对于演变中的液体界面,我们采用参数有限元素近值,引入隐含的正切速度来提高界面网格的质量。对于两个阶段的纳维埃-斯托克方程式,我们考虑了两种不同的方法:不适宜和适合的限定元素方法。在不合适的方法中,构建的方法以尤利安弱的配方为基础,而在安装的方法中则引入了一种新的任意的拉格朗吉-尤利安(ALE)弱方程式。我们采用这两种配方的适当离散式,我们引入了两种有限的元素方法,并证明了其结构保留特性。我们介绍了数字结果,以显示所采用方法的准确性和效率。