We consider coupled models for particulate flows, where the disperse phase is made of particles with distinct sizes. We are thus led to a system coupling the incompressible Navier-Stokes equations to the multi-component Vlasov-Fokker-Planck equations. We design an asymptotic-preserving numerical scheme to approximate the system. The scheme is based on suitable implicit treatment of the stiff drag force term as well as the Fokker-Planck operator, and can be formally shown to capture the hydrodynamic limit with time step and mesh size independent of the Stokes number. Numerical examples illustrate the accuracy and asymptotic behavior of the scheme, with several interesting applications.
翻译:我们考虑的是颗粒流的组合模型,这种模型的散射阶段是由不同大小的颗粒组成,因此导致一个系统,将不可压缩的纳维尔-斯托克斯方程式与多成分Vlasov-Fokker-Planck方程式相混合。我们设计了一个无症状保留数字方法,以接近这个系统。这个方法基于对僵硬的拖力期以及Fokker-Planck操作员的适当隐含处理,并且可以正式显示,用时间步骤和网状尺寸来捕捉流体动力极限,而不受斯托克斯编号的影响。数字例子说明了这个方法的准确性和无症状行为,并有若干有趣的应用。