This paper proposes various nonparametric tools based on measure transportation for directional data. We use optimal transports to define new notions of distribution and quantile functions on the hypersphere, with meaningful quantile contours and regions yielding closed-form formulas under the classical assumption of rotational symmetry. The empirical versions of our distribution functions enjoy the expected Glivenko-Cantelli property of traditional distribution functions. They provide fully distribution-free concepts of ranks and signs and define data-driven systems of (curvilinear) parallels and (hyper)meridians. Based on this, we also construct a universally consistent test of uniformity which, in simulations, outperforms the ``projected'' Cram\' er-von Mises, Anderson-Darling, and Rothman procedures recently proposed in the literature. We also propose fully distribution-free rank- and sign-based tests for directional MANOVA. Two real-data examples involving the analysis of sunspots and proteins structures conclude the paper.
翻译:本文提出了基于方向数据传输测量的各种非参数工具。 我们使用最佳运输方法来定义超视距上新的分布和四分位函数概念, 具有有意义的量度等宽度, 以及根据传统的循环对称假设产生封闭式公式的区域。 我们分配功能的经验版本享有传统分配功能的预期格利文科- 坎特利特性。 它们提供完全无分布的等级和标志概念, 并定义( 直线) 平行和( 超强) 超视距数据驱动系统。 在此基础上, 我们还构建了一个普遍一致的统一性测试, 在模拟中, 该测试优于最近在文献中提议的“ 预测的Cram\ er- von Mises ” 、 Anderson- Darling 和 Rothman 程序。 我们还提议对定向的 MANOVA 进行完全无分配的分级和符号测试。 两个真实数据实例, 涉及对日点和蛋白结构的分析。