We propose a uniform block diagonal preconditioner for condensed H(div)-conforming HDG schemes for parameter-dependent saddle point problems including the generalized Stokes problem and the linear elasticity. An optimal preconditioner is obtained for the stiffness matrix on the global velocity/displacement space via the auxiliary space preconditioning (ASP) technique [49]. A robust preconditioner spectrally equivalent to the Schur complement on the element-wise constant pressure space is also constructed. Finally, numerical results of the generalized Stokes and the steady linear elasticity equations verify the robustness of our proposed preconditioner with respect to model parameters and mesh size.
翻译:我们提议为精密H(div)符合HDG要求的临界点问题,包括普遍的斯托克斯问题和线性弹性,提供一个统一的区块对角先决条件;通过辅助空间先决条件技术(ASP),为全球速度/迁移空间的僵硬性矩阵取得一个最佳先决条件[49];在元素常态压力空间上,还建造了一个与Schur补充相等的强力光谱先决条件;最后,普遍Stokes和稳定的线性线性弹性方程式的数值结果证实了我们提议的前提条件在模型参数和网状尺寸方面的坚固性。