项目名称: 矩阵联合(块)对角化算法研究及在盲信号分离中的应用
项目编号: No.11301056
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 程光辉
作者单位: 电子科技大学
项目金额: 22万元
中文摘要: 本项目主要研究矩阵联合(块)对角化算法,以及此类算法在盲信号分离等领域的应用,属于问题驱动型课题,涉及到多个学科的交叉。本项目拟在代价函数中引入约束条件,把联合对角问题转化为一个双目标的优化问题,从而建立可以避免平凡解和退化解的算法;通过研究特征矩阵联合近似对角化、交替行对角化等算法的收敛性和终止标准,以矩阵分解理论为基础,构造新算法,提高计算效率;基于线性代数理论,对以矩阵*-代数理论为基础的联合块对角化算法进行分析和重构,并着重考虑新算法的计算量和计算精度;将目标矩阵组转化为三阶Tensor,利用Tensor分解技术建立联合(块)对角化算法,并搭建算法应用的软件平台。
中文关键词: 矩阵联合对角化;盲源分离;特征值;特征向量;Jacobi-like算法
英文摘要: In this project, we mainly study the matrix joint (block) diagonalization algorithms and their applications in blind source separation and other areas. This project is problem-motivated, involving cross of multiple disciplines. We intend to introduce some constraint conditions in cost function, treat the joint diagonalization problem as the two-objective optimization problem, and establish some new algorithms which can avoid trivial and degenerate solution; To improve the computational efficiency, some new algorithms proposed are based on the matrix decomposition, the convergence and stopping criterion of the joint approximate diagonalization of eigen-matrices, altering row diagonalization and other algorithms; Using linear algebraic theory, we analyze and reconstruct the joint block diagonalization algorithm which is based on matrix *-algebra theory, and mainly consider the computational demanding and precision; We also intend to treat the set of target matrices as third-order Tensor, and establish some new joint (block) diagonalization algorithms by Tensor decomposition technique, and the software application platform will be established.
英文关键词: matrices joint diagoanlization;blind sources separation;eigenvalue;eigenvector;Jacobi-like algorithm