This paper presents an algorithm to generate a new kind of polygonal mesh obtained from triangulations. Each polygon is built from a terminal-edge region surrounded by edges that are not the longest-edge of any of the two triangles that share them. The algorithm is termed Polylla and is divided into three phases. The first phase consists of labeling each edge of the input triangulation according to its size; the second phase builds polygons (simple or not) from terminal-edges regions using the label system; and the third phase transforms each non simple polygon into simple ones. The final mesh contains polygons with convex and non convex shape. Since Voronoi based meshes are currently the most used polygonal meshes, we compare some geometric properties of our meshes against constrained Voronoi meshes. Several experiments were run to compare the shape and size of polygons, the number of final mesh points and polygons. For the same input, Polylla meshes contain less polygons than Voronoi meshes, and the algorithm is simpler and faster than the algorithm to generate constrained Voronoi meshes. Finally, we have validated Polylla meshes by solving the Laplace equation on an L-shaped domain using the Virtual Element Method (VEM). We show that the numerical performance of the VEM using Polylla meshes and Voronoi meshes is similar.
翻译:本文提出了一个从三角形中生成新类型的多边形网格的算法。 每个多边形都是从末端边缘区域建造的, 周围的边缘并不是两个共享三角中任何一个最长的边缘。 算法称为 Polilla, 分为三个阶段。 第一阶段是按其大小给输入三角形的边缘贴标签; 第二阶段是使用标签系统从终端- 边缘区域建立多边形( 简单与否) ; 第三阶段是将每个非简单多边形转换为简单多边形 。 最终的网格中包含有螺旋形和非软形形状的多边形 。 由于基于Voronoioi 的网形是目前最常用的多边形网格, 我们比较了我们中间部分的一些几何属性的几何性能。 一些实验是为了比较多边形的形状和大小, 最终的网格点和多边形的数。 对于同样的输入, Polyla meshe 包含比Vornononoioi 中间形的多边形形形, 最后的算法比我们的平时程更简单, 的平时程比较快, 以LEM 表示法显示, 我们的平时程的平局的平局的平局的平局的平局比较快, 我们的平局的平方程式, 。