We develop in this paper two classes of length preserving schemes for the Landau-Lifshitz equation based on two different Lagrange multiplier approaches. In the first approach, the Lagrange multiplier $\lambda(\bx,t)$ equals to $|\nabla m(\bx,t)|^2$ at the continuous level, while in the second approach, the Lagrange multiplier $\lambda(\bx,t)$ is introduced to enforce the length constraint at the discrete level and is identically zero at the continuous level. By using a predictor-corrector approach, we construct efficient and robust length preserving higher-order schemes for the Landau-Lifshitz equation, with the computational cost dominated by the predictor step which is simply a semi-implicit scheme. Furthermore, by introducing another space-independent Lagrange multiplier, we construct energy dissipative, in addition to length preserving, schemes for the Landau-Lifshitz equation, at the expense of solving one nonlinear algebraic equation. We present ample numerical experiments to validate the stability and accuracy for the proposed schemes, and also provide a performance comparison with some existing schemes.
翻译:在本文中,我们根据两种不同的拉格兰梯倍增效应法,为Landau-Lifshitz等式制定了两类长线保护计划。在第一种办法中,Lagrange 乘数 $\lambda(bx,t) $=2美元等于连续水平$ nabla m(bx,t) =2美元,而在第二种办法中,Lagrange 乘数 $\lambda(bx,t) 美元用于在离散一级执行长度限制,在连续一级为零。我们采用预测者-纠正者办法,为Landau-Lifshitz等式设计高效和稳健的长线程保护计划,由预测者步骤主导的计算成本只是一个半不完全的计划。此外,通过采用另一种依靠空间的拉格兰格拉格朗乘数,我们除了长线保护外,还构建了Landau-Lifshitz等式的能源分离计划,而花费了解决一个非线性平方程式的费用。我们进行了充分的数字实验,以验证现有业绩计划的稳定性和准确性比较。我们还提供一些数字试验。