We consider studies where multiple measures on an outcome variable are collected over time, but some subjects drop out before the end of follow up. Analyses of such data often proceed under either a 'last observation carried forward' or 'missing at random' assumption. We consider two alternative strategies for identification; the first is closely related to the difference-in-differences methodology in the causal inference literature. The second enables correction for violations of the parallel trend assumption, so long as one has access to a valid 'bespoke instrumental variable'. These are compared with existing approaches, first conceptually and then in an analysis of data from the Framingham Heart Study.
翻译:我们考虑的是,在对结果变量采取多种措施时会收集一段时间,但有些专题在后续行动结束之前就退出了研究。对这些数据的分析往往在“最后推进的观察”或“随机缺失”的假设下进行。我们考虑的是两种不同的识别战略;第一个与因果推断文献中的差异性方法密切相关。第二个研究可以纠正违反平行趋势假设的情况,只要人们能够获得一个有效的“明显的工具变量 ” 。这些数据与现有方法进行了比较,首先在概念上比较,然后在对弗雷明翰心脏研究的数据进行分析时进行比较。