A common approach to solve a combinatorial optimization problem is to first solve a continous relaxation and then round the fractional solution. For the latter, the framework of contention resolution schemes (or CR schemes) introduced by Chekuri, Vondrak, and Zenklusen, has become a general and successful tool. A CR scheme takes a fractional point $x$ in a relaxation polytope, rounds each coordinate $x_i$ independently to get a possibly non-feasible set, and then drops some elements in order to satisfy the independence constraints. Intuitively, a CR scheme is $c$-balanced if every element $i$ is selected with probability at least $c \cdot x_i$. It is known that general matroids admit a $(1-1/e)$-balanced CR scheme, and that this is (asymptotically) optimal. This is in particular true for the special case of uniform matroids of rank one. In this work, we provide a simple and explicit monotone CR scheme with a balancedness factor of $1 - e^{-k}k^k/k!$ for uniform matroids of rank $k$ (which matches the balancedness of $1-1/e$ for $k=1$), and show that this is optimal. While this bound can be obtained by combining previously known results, these require defining an exponential-sized linear program and using random sampling and the ellipsoid algorithm. Our procedure, on the other hand, has the advantage of being simple and explicit. Moreover, this scheme generalizes into an optimal CR scheme for partition matroids.


翻译:解决组合优化问题的常见方法是首先解决连锁放松,然后绕过分数解决方案。对于后者而言,由Chekuri、Vondrak和Zenklusen推出的争议解决方案(或CR计划)框架(或CR计划)已经成为一个普遍和成功的工具。CR方案在放松的聚点中采用一个分点$x美元平衡的CR方案,每个回合独立协调$x美元,以获得一个可能不可行的数据集,然后降低一些元素以满足独立限制。直观地说,如果每个元素都选择了美元,那么CR方案就会达到美元平衡。众所周知,通用的matroid方案接受美元(1美元/e)平衡的CRRM方案,这是(默认的)最佳的。对于一等级的统一机能的特殊案例来说,我们提供一个简单和明确的单元C方案,其平衡系数为1美元-eQ-cdx美元。 平流化方案需要用一个平流/平流化的平流程序。 平整平平平平平平平平平平地平平平平平平平平地平平平平平平地平平平平平平。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
专知会员服务
39+阅读 · 2021年8月20日
专知会员服务
82+阅读 · 2021年5月10日
斯坦福EE364a《凸优化》课件,301页ppt
专知会员服务
96+阅读 · 2020年7月14日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
120+阅读 · 2020年5月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Entropic estimation of optimal transport maps
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员