For optimal control problems constrained by a initial-valued parabolic PDE, we have to solve a large scale saddle point algebraic system consisting of considering the discrete space and time points all together. A popular strategy to handle such a system is the Krylov subspace method, for which an efficient preconditioner plays a crucial role. The matching-Schur-complement preconditioner has been extensively studied in literature and the implementation of this preconditioner lies in solving the underlying PDEs twice, sequentially in time. In this paper, we propose a new preconditioner for the Schur complement, which can be used parallel-in-time (PinT) via the so called diagonalization technique. We show that the eigenvalues of the preconditioned matrix are low and upper bounded by positive constants independent of matrix size and the regularization parameter. The uniform boundedness of the eigenvalues leads to an optimal linear convergence rate of conjugate gradient solver for the preconditioned Schur complement system. To the best of our knowledge, it is the first time to have an optimal convergence analysis for a PinT preconditioning technique of the optimal control problem. Numerical results are reported to show that the performance of the proposed preconditioner is robust with respect to the discretization step-sizes and the regularization parameter.


翻译:对于受最初估价的抛物线 PDE 限制的最佳控制问题,我们必须解决一个大型马鞍点代谢系统,它包括考虑离散空间和时间点。处理这种系统的流行战略是Krylov 子空间方法,对此,一个高效的前提条件作用至关重要。在文献中广泛研究了匹配-Schur-Complication 先决条件,而执行这一先决条件在于两次、连续地解决基本PDE,在时间上先后解决。在本文中,我们提议一个新的先锋补充系统的先决条件,可以通过所谓的对成形技术同时使用(PinT ) 。我们表明,对先决条件矩阵的天平值低,并且由不依赖矩阵大小和规范参数的正常数高度约束。对成形梯值的统一,导致先锋梯梯度溶液双倍最佳的线性融合率。对于我们的知识来说,这是第一次对PinT 的同步化(PinT) 技术同时使用。我们表明,所报告的最稳健性化的顶端控制技术是所报告的最稳性性标准。

0
下载
关闭预览

相关内容

专知会员服务
95+阅读 · 2021年8月28日
专知会员服务
27+阅读 · 2021年7月11日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
Top
微信扫码咨询专知VIP会员