We obtain explicit $p$-Wasserstein distance error bounds between the distribution of the multi-parameter MLE and the multivariate normal distribution. Our general bounds are given for possibly high-dimensional, independent and identically distributed random vectors. Our general bounds are of the optimal $\mathcal{O}(n^{-1/2})$ order. Explicit numerical constants are given when $p\in(1,2]$, and in the case $p>2$ the bounds are explicit up to a constant factor that only depends on $p$. We apply our general bounds to derive Wasserstein distance error bounds for the multivariate normal approximation of the MLE in several settings; these being single-parameter exponential families, the normal distribution under canonical parametrisation, and the multivariate normal distribution under non-canonical parametrisation. In addition, we provide upper bounds with respect to the bounded Wasserstein distance when the MLE is implicitly defined.
翻译:我们获得了多参数 MLE 分布和多变量正态分布之间的明确 $p$- Wasserstein 距离错误界限。 我们的通用界限给定了可能高维、独立和相同分布的随机矢量。 我们的一般界限是最佳 $mathcal{O}( n ⁇ -1/2}) 的顺序。 当$p\ in(1, 2美元) 时给出了明确的数字常数, 而在此情况下, 则给出了 $p> 2 的界限, 直达一个仅取决于 $p$ 的恒定系数。 我们应用了我们的一般界限来为 MLE 的多变量正常近似值得出瓦瑟斯坦 距离界限; 这些是单参数的指数式直径, 公元对称对齐的正常分布, 以及非卡门方形对齐的多变量正态分布。 此外, 当MLE 被暗含定义时, 我们提供约束瓦瑟斯坦 距离的上限 。