最近最优传输(OT)理论在机器学习中的几个应用都依赖于正则化,尤其是熵和Sinkhorn算法。由于矩阵向量乘积在Sinkhorn算法中是普遍存在的,一些工作已经提出使用低秩因子来近似其迭代中出现的核矩阵。另一种方法是在OT问题中考虑的可行耦合集上施加低非负秩约束,不需要对代价或核矩阵进行逼近。这条路线首先由forrow2018探索,他提出了一种为平方欧氏地面成本量身定制的算法,使用了一个代理目标,可以通过正则化的Wasserstein重心机制来解决。在此基础上,我们引入了一种通用方法,旨在完全通用性地解决具有任意代价的低非负秩约束下的OT问题。我们的算法依赖于低秩耦合的显式分解,将其作为由公共边际连接的子耦合因子的乘积; 与NMF方法类似,我们交替更新这些因素。证明了该算法的非渐近平稳收敛性,并通过基准实验证明了该算法的有效性。
https://www.zhuanzhi.ai/paper/9f498d13bd99855dfac185ee9d905999