We consider n robots with limited visibility: each robot can observe other robots only up to a constant distance denoted as the viewing range. The robots operate in discrete rounds that are either fully synchronous (FSync) or semi-synchronized (SSync). Most previously studied formation problems in this setting seek to bring the robots closer together (e.g., Gathering or Chain-Formation). In this work, we introduce the Max-Line-Formation problem, which has a contrary goal: to arrange the robots on a straight line of maximal length. First, we prove that the problem is impossible to solve by robots with a constant sized circular viewing range. The impossibility holds under comparably strong assumptions: robots that agree on both axes of their local coordinate systems in FSync. On the positive side, we show that the problem is solvable by robots with a constant square viewing range, i.e., the robots can observe other robots that lie within a constant-sized square centered at their position. In this case, the robots need to agree on only one axis of their local coordinate systems. We derive two algorithms: the first algorithm considers oblivious robots and converges to the optimal configuration in time $\mathcal{O}(n^2 \cdot \log (n/\varepsilon))$ under the SSync scheduler. The other algorithm makes use of locally visible lights (LUMI). It is designed for the FSync scheduler and can solve the problem exactly in optimal time $\Theta(n)$. Afterward, we show that both the algorithmic and the analysis techniques can also be applied to the Gathering and Chain-Formation problem: we introduce an algorithm with a reduced viewing range for Gathering and give new and improved runtime bounds for the Chain-Formation problem.


翻译:我们考虑的是可见度有限的n机器人:每个机器人只能观测到其他机器人,直到一个固定的距离,以显示显示范围最宽的距离。首先,我们证明机器人无法用一个固定的圆形观察范围来解决这个问题。在相当强烈的假设下,无法操作:在FSync中同意其本地协调系统两个轴的机器人。在积极的一面,我们显示问题由具有恒定正方查看范围的机器人来解析,也就是说,机器人也可以对位于其位置的固定正方形直线进行排列。首先,我们证明,用一个不变的圆形环查看范围来解决问题是不可能的。在这种假设下,在FSync中,在两种本地协调的轴上,在Orderalxxxlxxlxlxlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年7月11日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
0+阅读 · 2021年11月16日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年7月11日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员