Unfolding networks have shown promising results in the Compressed Sensing (CS) field. Yet, the investigation of their generalization ability is still in its infancy. In this paper, we perform generalization analysis of a state-of-the-art ADMM-based unfolding network, which jointly learns a decoder for CS and a sparsifying redundant analysis operator. To this end, we first impose a structural constraint on the learnable sparsifier, which parametrizes the network's hypothesis class. For the latter, we estimate its Rademacher complexity. With this estimate in hand, we deliver generalization error bounds for the examined network. Finally, the validity of our theory is assessed and numerical comparisons to a state-of-the-art unfolding network are made, on synthetic and real-world datasets. Our experimental results demonstrate that our proposed framework complies with our theoretical findings and outperforms the baseline, consistently for all datasets.
翻译:解开的网络在压缩遥感(CS)领域显示出了令人乐观的结果。 然而,对其一般化能力的调查仍然处于初级阶段。 在本文中,我们对一个以ADMM为基础的最先进的正在展开的网络进行一般化分析,这个网络共同学习CS解码器和一个将冗余的分析操作员。为此目的,我们首先对可学习的封闭器施加结构性限制,它相当于网络的假设等级。对于后者,我们估计它的Rademacher复杂程度。我们掌握了这一估计,我们为所审查的网络提供了一般化的界限。最后,在合成和现实世界的数据集上,评估了我们理论的有效性,并对正在展开的状态网络进行了数字比较。我们的实验结果表明,我们提议的框架符合我们的理论发现,并且超越了基线,对所有数据集都是一贯的。</s>