In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and re-label them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we re-label the noisy data in our dataset for our industry application. The experiment result shows that our method improve the classification accuracy from 91.7% to 92.5%. The 91.7% accuracy is trained on the corrected dataset, which improve the baseline from 83.3% to 91.7%.


翻译:在工业NLP应用程序中,我们手工标签的数据含有一定数量的噪音数据。我们提出了一个简单的方法来查找噪音数据并手工重新标签,同时我们收集更正信息。然后我们将新的方法将人类校正信息纳入深层学习模式。人类知道如何校正噪音数据。因此,校正信息可以输入深层学习模式。我们用手工标签在自己的文本分类数据集上做实验,因为我们在工业应用程序的数据集中重新标签了噪音数据。实验结果显示,我们的方法提高了分类精确度,从91.7%提高到92.5%。91.7%的精确度是在校正数据集上培训的,该数据集将基线从83.3%提高到91.7%。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2020年12月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
主动学习(Active Learning),看这一篇就够了
专知
6+阅读 · 2022年4月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月10日
Arxiv
0+阅读 · 2023年2月10日
Arxiv
11+阅读 · 2020年12月2日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
主动学习(Active Learning),看这一篇就够了
专知
6+阅读 · 2022年4月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
0+阅读 · 2023年2月10日
Arxiv
0+阅读 · 2023年2月10日
Arxiv
11+阅读 · 2020年12月2日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
15+阅读 · 2018年2月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员