We describe a Lanczos-based algorithm for approximating the product of a rational matrix function with a vector. This algorithm, which we call the Lanczos method for optimal rational matrix function approximation (Lanczos-OR), returns the optimal approximation from a given Krylov subspace in a norm depending on the rational function's denominator, and can be computed using the information from a slightly larger Krylov subspace. We also provide a low-memory implementation which only requires storing a number of vectors proportional to the denominator degree of the rational function. Finally, we show that Lanczos-OR can be used to derive algorithms for computing other matrix functions, including the matrix sign function and quadrature based rational function approximations. In many cases, it improves on the approximation quality of prior approaches, including the standard Lanczos method, with little additional computational overhead.
翻译:我们描述一种基于 Lanczos 的算法, 以近似于一个矢量的理性矩阵函数的产物。 这个算法, 我们称之为 Lanczos 法, 以优化合理矩阵函数近似( Lanczos- OR), 返回根据合理函数分母的规范中给定 Krylov 子空间的最佳近似值, 并且可以使用稍大一点的 Krylov 子空间的信息进行计算 。 我们还提供一种低分子化的实施, 只需要存储与理性函数的分母度成比例的若干矢量。 最后, 我们显示 Lanczos- OR 可以用来为计算其他矩阵函数而生成算法, 包括矩阵符号函数和基于理性函数的二次函数近似值 。 在许多情况下, 它会提高先前方法的近似质量, 包括标准的 Lanczos 方法, 以及很少增加的计算间接费用 。