We provide a framework for the numerical approximation of distributed optimal control problems, based on least-squares finite element methods. Our proposed method simultaneously solves the state and adjoint equations and is $\inf$--$\sup$ stable for any choice of conforming discretization spaces. A reliable and efficient a posteriori error estimator is derived for problems where box constraints are imposed on the control. It can be localized and therefore used to steer an adaptive algorithm. For unconstrained optimal control problems we obtain a pure least-squares finite element method whereas for constrained problems we derive and analyze a variational inequality where the PDE part is tackled by least-squares finite element methods. We show that the abstract framework can be applied to a wide range of problems, including scalar second-order PDEs, the Stokes problem, and parabolic problems on space-time domains. Numerical examples for some selected problems are presented.
翻译:我们根据最小方位限制元素的方法,为分布式最佳控制问题的数字近似提供了一个框架。 我们建议的方法同时解决状态方程式和连接方程式,对于符合离散空间的任何选择,我们建议的方法是$-$-$\sup$稳定。 对于对控件施加框限制的问题,可以产生一个可靠而高效的后传误差估计器。它可以本地化,从而用于引导适应性算法。 对于未受限制的最佳控制问题,我们获得了纯最小方位限制元素方法,而对于受限制的问题,我们得出并分析了差异性不平等,而PDE部分则通过最小方位限制元素方法解决。我们显示,抽象框架可以应用于广泛的问题,包括标标二阶的PDES、斯托克斯问题和空间时空域的parbolice问题。 某些特定问题的量化示例被提出。