Semi-supervised medical image segmentation has attracted much attention in recent years because of the high cost of medical image annotations. In this paper, we propose a novel Inherent Consistent Learning (ICL) method, which aims to learn robust semantic category representations through the semantic consistency guidance of labeled and unlabeled data to help segmentation. In practice, we introduce two external modules namely Supervised Semantic Proxy Adaptor (SSPA) and Unsupervised Semantic Consistent Learner (USCL) that based on the attention mechanism to align the semantic category representations of labeled and unlabeled data, as well as update the global semantic representations over the entire training set. The proposed ICL is a plug-and-play scheme for various network architectures and the two modules are not involved in the testing stage. Experimental results on three public benchmarks show that the proposed method can outperform the state-of-the-art especially when the number of annotated data is extremely limited. Code is available at: https://github.com/zhuye98/ICL.git.
翻译:近年来,由于医学图像注释的高成本,半监督的医学图像分割受到了广泛关注。本文提出了一种新颖的固有一致学习(ICL)方法,旨在通过标注和未标注数据的语义一致性指导,学习出稳健的语义类别表示以帮助分割。在实际应用中,我们引入了两个外部模块:基于注意力机制的监督语义代理适配器(SSPA)和无监督的语义一致性学习器(USCL),以对齐标注和未标注数据的语义类别表示,并更新整个训练集的全局语义表示。所提出的ICL是一种即插即用方案,适用于各种网络架构,两个模块在测试阶段不参与。在三个公共基准上的实验结果表明,所提出的方法在注释数据数量极少时尤其优于现有技术。代码可在https://github.com/zhuye98/ICL.git中获取。