论文主题: Machine Learning Techniques for Biomedical Image Segmentation: An Overview of Technical Aspects and Introduction to State‐of‐Art Applications

论文摘要: 近年来,在开发更精确、更有效的医学图像和自然图像分割的机器学习算法方面取得了重大进展。在这篇综述文章中,我们强调了机器学习算法在医学影像领域实现高效准确分割的重要作用。我们特别关注与机器学习方法在生物医学图像分割中的应用相关的几个关键研究。我们回顾了经典的机器学习算法,如马尔可夫随机场、k-均值聚类、随机森林等。尽管与深度学习技术相比,此类经典学习模型往往不太准确,但它们往往更具样本效率,结构也不太复杂。我们还回顾了不同的深度学习结构,如人工神经网络(ANNs)、卷积神经网络(CNNs)和递归神经网络(RNNs),并给出了这些学习模型在过去三年中取得的分割结果。我们强调了每种机器学习范式的成功和局限性。此外,我们还讨论了与不同机器学习模型训练相关的几个挑战,并提出了一些启发式方法来解决这些挑战。

成为VIP会员查看完整内容
0
34

相关内容

RNN:循环神经网络,是深度学习的一种模型。

本文综述了元学习在图像分类、自然语言处理和机器人技术等领域的应用。与深度学习不同,元学习使用较少的样本数据集,并考虑进一步改进模型泛化以获得更高的预测精度。我们将元学习模型归纳为三类: 黑箱适应模型、基于相似度的方法模型和元学习过程模型。最近的应用集中在将元学习与贝叶斯深度学习和强化学习相结合,以提供可行的集成问题解决方案。介绍了元学习方法的性能比较,并讨论了今后的研究方向。

成为VIP会员查看完整内容
0
197

【导读】元学习旨在学会学习,是当下研究热点之一。最近来自爱丁堡大学的学者发布了关于元学习最新综述论文《Meta-Learning in Neural Networks: A Survey》,值得关注,详述了元学习体系,包括定义、方法、应用、挑战,成为不可缺少的文献。

近年来,元学习领域,或者说“学会学习的学习”,引起了人们极大的兴趣。与传统的人工智能方法(使用固定的学习算法从头开始解决给定的任务)不同,元学习的目的是改进学习算法本身,考虑到多次学习的经验。这个范例提供了一个机会来解决深度学习的许多传统挑战,包括数据和计算瓶颈,以及泛化的基本问题。在这项综述中,我们描述了当代元学习的景观。我们首先讨论元学习的定义,并将其定位于相关领域,如迁移学习、多任务学习和超参数优化。然后,我们提出了一个新的分类法,对元学习方法的空间进行了更全面的细分。我们综述了元学习的一些有前途的应用和成功案例,包括小样本学习、强化学习和体系架构搜索。最后,我们讨论了突出的挑战和未来研究的有希望的领域。

https://arxiv.org/abs/2004.05439

概述

现代机器学习模型通常是使用手工设计的固定学习算法,针对特定任务从零开始进行训练。基于深度学习的方法在许多领域都取得了巨大的成功[1,2,3]。但是有明显的局限性[4]。例如,成功主要是在可以收集或模拟大量数据的领域,以及在可以使用大量计算资源的领域。这排除了许多数据本质上是稀有或昂贵的[5],或者计算资源不可用的应用程序[6,7]。

元学习提供了另一种范式,机器学习模型可以在多个学习阶段获得经验——通常覆盖相关任务的分布——并使用这些经验来改进未来的学习性能。这种“学会学习”[8]可以带来各种好处,如数据和计算效率,它更适合人类和动物的学习[9],其中学习策略在一生和进化时间尺度上都得到改善[10,9,11]。机器学习在历史上是建立在手工设计的特征上的模型,而特征的选择往往是最终模型性能的决定因素[12,13,14]。深度学习实现了联合特征和模型学习的承诺[15,16],为许多任务提供了巨大的性能改进[1,3]。神经网络中的元学习可以看作是集成联合特征、模型和算法学习的下一步。神经网络元学习有着悠久的历史[17,18,8]。然而,它作为推动当代深度学习行业前沿的潜力,导致了最近研究的爆炸性增长。特别是,元学习有可能缓解当代深度学习[4]的许多主要批评,例如,通过提供更好的数据效率,利用先验知识转移,以及支持无监督和自主学习。成功的应用领域包括:小样本图像识别[19,20]、无监督学习[21]、数据高效[22,23]、自导向[24]强化学习(RL)、超参数优化[25]和神经结构搜索(NAS)[26, 27, 28]。

在文献中可以找到许多关于元学习的不同观点。特别是由于不同的社区对这个术语的使用略有不同,所以很难定义它。与我们[29]相关的观点认为,元学习是管理“没有免费午餐”定理[30]的工具,并通过搜索最适合给定问题或问题族的算法(归纳偏差)来改进泛化。然而,从广义上来说,这个定义可以包括迁移、多任务、特征选择和模型集成学习,这些在今天通常不被认为是元学习。另一个关于元学习[31]的观点广泛地涵盖了基于数据集特性的算法选择和配置技术,并且很难与自动机器学习(AutoML)[32]区分开来。在这篇论文中,我们关注当代的神经网络元学习。我们将其理解为算法或归纳偏差搜索,但重点是通过端到端学习明确定义的目标函数(如交叉熵损失、准确性或速度)来实现的。

因此,本文提供了一个独特的,及时的,最新的调查神经网络元学习领域的快速增长。相比之下,在这个快速发展的领域,以往的研究已经相当过时,或者关注于数据挖掘[29、33、34、35、36、37、31]、自动[32]的算法选择,或者元学习的特定应用,如小样本学习[38]或神经架构搜索[39]。

我们讨论元学习方法和应用。特别是,我们首先提供了一个高层次的问题形式化,它可以用来理解和定位最近的工作。然后,我们在元表示、元目标和元优化器方面提供了一种新的方法分类。我们调查了几个流行和新兴的应用领域,包括少镜头、强化学习和架构搜索;并对相关的话题如迁移学习、多任务学习和自动学习进行元学习定位。最后,我们讨论了尚未解决的挑战和未来研究的领域。

未来挑战:

-元泛化 元学习在不同任务之间面临着泛化的挑战,这与传统机器学习中在不同实例之间进行泛化的挑战类似。

  • 任务分布的多模态特性
  • 任务族
  • 计算代价
  • 跨模态迁移和异构任务

总结

元学习领域最近出现了快速增长的兴趣。这带来了一定程度的混乱,比如它如何与邻近的字段相关联,它可以应用到什么地方,以及如何对它进行基准测试。在这次综述中,我们试图通过从方法学的角度对这一领域进行彻底的调查来澄清这些问题——我们将其分为元表示、元优化器和元目标的分类;从应用的角度来看。我们希望这项调查将有助于新人和实践者在这个不断增长的领域中定位自己,并强调未来研究的机会。

成为VIP会员查看完整内容
0
174

题目: Image Segmentation Using Deep Learning: A Survey

摘要:

图像分割是图像处理和计算机视觉领域的一个重要课题,其应用领域包括场景理解、医学图像分析、机器人感知、视频监控、增强现实和图像压缩等。文献中已经发展了各种图像分割算法。最近,由于深度学习模型在广泛的视觉应用中取得了成功,已经有大量的工作致力于开发使用深度学习模型的图像分割方法。在本次调查中,我们对撰写本文时的文献进行了全面的回顾,涵盖了语义和实例级分割的广泛的开创性著作,包括全卷积像素标记网络,编码器-解码器架构,多尺度和基于金字塔的方法,递归网络,视觉注意力模型,以及在对抗性环境下的生成模型。我们调查了这些深度学习模型的相似性、优势和挑战,研究了最广泛使用的数据集,报告了性能,并讨论了该领域未来的研究方向。

成为VIP会员查看完整内容
0
68

题目: Embracing Imperfect Datasets:A Review of Deep Learning Solutions for Medical Image Segmentation

摘要: 医学影像文献在基于卷积神经网络的高性能分割模型方面取得了显著进展。尽管新的性能很高,最近的高级分割模型仍然需要海量的、典型的,高质量的带有标签的数据集。然而,我们很少有一个完美的训练数据集,特别是在医学图像领域,因为获取数据和打标签都是昂贵的。近年来,大量的研究对不完全数据集的医学图像分割问题进行了研究,解决了两大数据集的局限性:一是训练有标签的数据太少,只有有限的标签数据可用;二是训练数据只有稀疏标签、噪声标签或图像级标签的软标签。在本文中,我们对上述解决方案进行了详细的回顾,总结了技术创新和经验结果。我们进一步比较涉及的方法的好处和要求,并提供我们推荐的解决方案。我们希望这篇综述文章能提高公众对处理不完善的医学图像分割数据集的技术的认识。

成为VIP会员查看完整内容
0
61

简介:

近年来,由于机器学习(ML)/深度学习(DL)技术使用多维医学图像,在从一维心脏信号的心脏骤停的预测到计算机辅助诊断(CADx)的各种医疗保健应用中的卓越性能,见证了机器学习(ML)/深度学习(DL)技术的广泛采用。尽管ML / DL的性能令人印象深刻,但对于ML / DL在医疗机构中的健壮性仍然存有疑虑(由于涉及众多安全性和隐私问题,传统上认为ML / DL的挑战性很大),尤其是鉴于最近的研究结果表明ML / DL容易受到对抗性攻击。在本文中,我们概述了医疗保健中各个应用领域,这些领域从安全性和隐私性的角度利用了这些技术,并提出了相关的挑战。此外,我们提出了潜在的方法来确保医疗保健应用程序的安全和隐私保护机器学习。最后,我们提供了有关当前研究挑战的见解以及未来研究的有希望的方向。

内容大纲:

成为VIP会员查看完整内容
0
34

论文题目:

Machine Learning Techniques for Biomedical Image Segmentation: An Overview of Technical Aspects and Introduction to State-of-Art Applications

论文摘要: 近年来,在开发更精确、更有效的医学图像和自然图像分割的机器学习算法方面取得了重大进展。在这篇综述文章中,我们强调了机器学习算法在医学图像领域实现高效准确分割的重要作用。我们特别关注与机器学习方法在生物医学图像分割中的应用相关的几个关键研究。我们回顾了经典的机器学习算法,如马尔可夫随机场、k-均值聚类、随机森林等,虽然这些经典的学习模型往往比深度学习技术更不精确,但它们往往更具样本效率,结构也更不复杂。我们还回顾了不同的深度学习结构,如人工神经网络(ANNs)、卷积神经网络(CNNs)和递归神经网络(RNNs),并给出了这些学习模型在过去三年中取得的分割结果。我们强调了每种机器学习范式的成功和局限性。此外,我们还讨论了与不同机器学习模型训练相关的几个挑战,并提出了一些启发式方法来解决这些挑战。

成为VIP会员查看完整内容
Machine Learning Techniques for Biomedical Image Segmentation An Overview of Technical Aspects and Introduction to State-of-Art Applications.pdf
0
44

论文主题: Recent Advances in Deep Learning for Object Detection

论文摘要: 机器学习社区已经被大量基于深度学习的方法所淹没。卷积神经网络、递归神经网络、对抗神经网络、自编码等多种深部神经网络正有效地解决无约束环境下目标的检测、定位、识别和分割等具有挑战性的计算机视觉任务。而关于目标检测的分析研究已经有很多了或识别领域,许多新的深度学习技术已经浮出水面关于图像分割技术。本文探讨这些不同的图像分割深度学习技术分析视角。这项工作的主要目标是提供一个对重要技术的直观理解对图像分割领域的贡献。从一些在传统的图像分割方法的基础上,本文对图像分割技术进行了研究刻划深度学习对图像分割领域的影响。此后,大多数主要的分割算法已按照专用于其独特贡献的段落进行了逻辑分类。借助大量直观的说明,可以期望读者具有更好的可视化这些内部动态的能力流程。

成为VIP会员查看完整内容
0
46

摘要:深度学习是近年来应用最广泛的心脏图像分割方法。在这篇文章中,我们回顾了超过100篇使用深度学习的心脏图像分割论文,这些论文涵盖了常见的成像方式,包括磁共振成像(MRI)、计算机断层扫描(CT)和超声(US)以及感兴趣的主要解剖结构(心室、心房和血管)。此外,公开可用的心脏图像数据集和代码库的摘要也包括在内,为鼓励重复性研究提供了基础。最后,我们讨论了当前基于深度学习的方法的挑战和局限性(缺乏标签、不同领域的模型可泛化性、可解释性),并提出了未来研究的潜在方向。

成为VIP会员查看完整内容
0
32

摘要:近年来,在开发更准确、高效的医学和自然图像分割机器学习算法方面取得了重大进展。在这篇综述文章中,我们强调了机器学习算法在医学成像领域有效和准确分割中的重要作用。我们特别关注几个关键的研究涉及到应用机器学习方法在生物医学图像分割。我们回顾了经典的机器学习算法,如马尔可夫随机场、k均值聚类、随机森林等。尽管与深度学习技术相比,这种经典的学习模型往往精度较低,但它们通常更具有样本效率,结构也更简单。我们还回顾了不同的深度学习结构,如人工神经网络(ANNs)、卷积神经网络(CNNs)和递归神经网络(RNNs),并给出了这些学习模型在过去三年中获得的分割结果。我们强调每种机器学习范式的成功和局限性。此外,我们还讨论了与不同机器学习模型训练相关的几个挑战,并提出了一些解决这些挑战的启发方法。

成为VIP会员查看完整内容
0
28

题目: Understanding Deep Learning Techniques for Image Segmentation

简介: 机器学习已被大量基于深度学习的方法所淹没。各种类型的深度神经网络(例如卷积神经网络,递归网络,对抗网络,自动编码器等)有效地解决了许多具有挑战性的计算机视觉任务,例如在不受限制的环境中对对象进行检测,定位,识别和分割。尽管有很多关于对象检测或识别领域的分析研究,但相对于图像分割技术,出现了许多新的深度学习技术。本文从分析的角度探讨了图像分割的各种深度学习技术。这项工作的主要目的是提供对图像分割领域做出重大贡献的主要技术的直观理解。从一些传统的图像分割方法开始,本文进一步描述了深度学习对图像分割域的影响。此后,大多数主要的分割算法已按照专用于其独特贡献的段落进行了逻辑分类。

成为VIP会员查看完整内容
Understanding Deep Learning Techniques for Image Segmentation.pdf
0
84
小贴士
相关VIP内容
专知会员服务
197+阅读 · 2020年5月8日
医学图像分割的深度学习解决方案综述
专知会员服务
61+阅读 · 2020年2月14日
【文献综述】图像分割综述,224篇参考文献,附58页PDF
专知会员服务
84+阅读 · 2019年6月16日
相关论文
Image Segmentation Using Deep Learning: A Survey
Shervin Minaee,Yuri Boykov,Fatih Porikli,Antonio Plaza,Nasser Kehtarnavaz,Demetri Terzopoulos
32+阅读 · 2020年1月15日
FocusNet: An attention-based Fully Convolutional Network for Medical Image Segmentation
Chaitanya Kaul,Suresh Manandhar,Nick Pears
4+阅读 · 2019年2月8日
Claudio Gambella,Bissan Ghaddar,Joe Naoum-Sawaya
10+阅读 · 2019年1月16日
A New Ensemble Learning Framework for 3D Biomedical Image Segmentation
Hao Zheng,Yizhe Zhang,Lin Yang,Peixian Liang,Zhuo Zhao,Chaoli Wang,Danny Z. Chen
4+阅读 · 2018年12月10日
Chunwei Tian,Yong Xu,Lunke Fei,Ke Yan
4+阅读 · 2018年10月11日
Automatically Designing CNN Architectures for Medical Image Segmentation
Aliasghar Mortazi,Ulas Bagci
9+阅读 · 2018年7月19日
W-net: Bridged U-net for 2D Medical Image Segmentation
Wanli Chen,Yue Zhang,Junjun He,Yu Qiao,Yifan Chen,Hongjian Shi,Xiaoying Tang
16+阅读 · 2018年7月12日
Lin Yang,Yizhe Zhang,Zhuo Zhao,Hao Zheng,Peixian Liang,Michael T. C. Ying,Anil T. Ahuja,Danny Z. Chen
4+阅读 · 2018年6月2日
Holger R. Roth,Chen Shen,Hirohisa Oda,Masahiro Oda,Yuichiro Hayashi,Kazunari Misawa,Kensaku Mori
5+阅读 · 2018年3月23日
Xiaowei Xu,Qing Lu,Yu Hu,Lin Yang,Sharon Hu,Danny Chen,Yiyu Shi
5+阅读 · 2018年3月13日
Top