项目名称: 基于多姿态模板匹配的果树性诱靶标害虫识别模型与计数方法研究

项目编号: No.31301238

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 农业科学

项目作者: 孙传恒

作者单位: 北京市农林科学院

项目金额: 23万元

中文摘要: 果树害虫自动监测识别与计数是精确防治得以实施的重要基础。目前害虫图像识别集中在害虫样本标准姿态模板下的特征提取,较少考虑自然场景下性诱害虫多姿态对识别的影响,导致应用中识别率偏低。本研究拟以果树常发害虫桃柱螟性诱成虫为例,探究基于多姿态模板匹配的果树性诱靶标害虫识别模型与计数新方法。探究靶标害虫姿态空间分布的影响因子和阈值判定方法,研究基于非线性流行学习的图像空间与姿态空间映射方法,建立靶标害虫姿态集;研究不同姿态下害虫图像特征,挖掘差异信息并进行选择与压缩,筛选图像中颜色、形态等全局特征及角点、兴趣点等尺度不变局部特征指标,建立基于姿态集的害虫识别模板库。采用K折交叉验证法对模板集和测试集进行选择,通过训练、构造和优化分类器参数,建立害虫模板匹配识别模型,构建适于自然场景下果树诱捕害虫识别与计数新方法,达到提高果树害虫识别计数准确率和鲁棒性的目的,为开发实用的害虫计数设备提供方法指导。

中文关键词: 害虫计数;机器视觉;图像分割;支持向量机;种群估计

英文摘要: Automatic identification and counting for fruit pests real-time monitoring was an important foundation for precise pest-control. Currently, pest image identification researches focus on feature extraction based on standard pose samples, without considering the influence from multi-pose of pests in natural scene. Consequently, the identification rate of these methods is low in practical orchand application. Dichocrocis Punctiferalis was selected for this study, a new method for fruit target pests captured by pheromone-baited counting was put forward based on multi-pose templates matching identification technology to overcome the shortcoming mentioned above. The impact factors of and threshod of the target pests pose sptial distribution were explored, and a novel manifold learning method was adopted to explore the low-dimensional feature space distribution structure hidden in high-dimensional observable pest image space,thus a fruit pest pose sets were established.The global features(color, shape) and affine invariant local features(angular points, interest points) were extracted from different pose images. Then these different information were selected and compressed to establish the multi-pose template library for fruit pest identification. K fold cross-validation method was used to select the template sets and

英文关键词: Insect counting;Machine vision;Image segmentation;Support vector machine;Population estimation

成为VIP会员查看完整内容
0

相关内容

机器视觉通常用于分析图像,并生成一个对被生成图像物体或场景的描述,这些描述最终用于辅助或决定机器人控制决策。 一门基于计算机图像识别和分析的技术。主要用于自动检测,流程控制或机器人引导等。
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
21+阅读 · 2021年11月29日
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
16+阅读 · 2021年5月23日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
36+阅读 · 2021年4月16日
基于小样本学习的图像分类技术综述(中文版),19页pdf
专知会员服务
87+阅读 · 2021年3月15日
深度学习目标检测方法综述
专知会员服务
273+阅读 · 2020年8月1日
专知会员服务
50+阅读 · 2020年7月16日
基于小样本学习的图像分类技术综述
专知会员服务
148+阅读 · 2020年5月6日
TPAMI 2019 | 鲁棒RGB-D人脸识别
计算机视觉life
11+阅读 · 2019年6月8日
干货总结 | SLAM 面试常见问题及参考解答
计算机视觉life
17+阅读 · 2019年5月19日
如何理解模型的过拟合与欠拟合,以及如何解决?
七月在线实验室
12+阅读 · 2019年4月23日
人脸专集5 | 最新的图像质量评价
计算机视觉战队
27+阅读 · 2019年4月13日
博客 | 回归类算法最全综述及逻辑回归重点讲解
AI研习社
13+阅读 · 2018年11月29日
基于深度学习的图像目标检测(下)
机器学习研究会
12+阅读 · 2018年1月1日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年5月16日
Arxiv
0+阅读 · 2022年5月12日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
11+阅读 · 2018年1月18日
小贴士
相关VIP内容
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
21+阅读 · 2021年11月29日
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
16+阅读 · 2021年5月23日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
36+阅读 · 2021年4月16日
基于小样本学习的图像分类技术综述(中文版),19页pdf
专知会员服务
87+阅读 · 2021年3月15日
深度学习目标检测方法综述
专知会员服务
273+阅读 · 2020年8月1日
专知会员服务
50+阅读 · 2020年7月16日
基于小样本学习的图像分类技术综述
专知会员服务
148+阅读 · 2020年5月6日
相关资讯
TPAMI 2019 | 鲁棒RGB-D人脸识别
计算机视觉life
11+阅读 · 2019年6月8日
干货总结 | SLAM 面试常见问题及参考解答
计算机视觉life
17+阅读 · 2019年5月19日
如何理解模型的过拟合与欠拟合,以及如何解决?
七月在线实验室
12+阅读 · 2019年4月23日
人脸专集5 | 最新的图像质量评价
计算机视觉战队
27+阅读 · 2019年4月13日
博客 | 回归类算法最全综述及逻辑回归重点讲解
AI研习社
13+阅读 · 2018年11月29日
基于深度学习的图像目标检测(下)
机器学习研究会
12+阅读 · 2018年1月1日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员