Recently, general fractional calculus was introduced by Kochubei (2011) and Luchko (2021) as a further generalisation of fractional calculus, where the derivative and integral operator admits arbitrary kernel. Such a formalism will have many applications in physics and engineering, since the kernel is no longer restricted. We first extend the work of Al-Refai and Luchko (2023) on finite interval to arbitrary orders. Followed by, developing an efficient Petrov-Galerkin scheme by introducing Jacobi convolution polynomials as basis functions. A notable property of this basis function, the general fractional derivative of Jacobi convolution polynomial is a shifted Jacobi polynomial. Thus, with a suitable test function it results in diagonal stiffness matrix, hence, the efficiency in implementation. Furthermore, our method is constructed for any arbitrary kernel including that of fractional operator, since, its a special case of general fractional operator.
翻译:暂无翻译