Acronym disambiguation means finding the correct meaning of an ambiguous acronym from the dictionary in a given sentence, which is one of the key points for scientific document understanding (SDU@AAAI-22). Recently, many attempts have tried to solve this problem via fine-tuning the pre-trained masked language models (MLMs) in order to obtain a better acronym representation. However, the acronym meaning is varied under different contexts, whose corresponding phrase representation mapped in different directions lacks discrimination in the entire vector space. Thus, the original representations of the pre-trained MLMs are not ideal for the acronym disambiguation task. In this paper, we propose a Simple framework for Contrastive Learning of Acronym Disambiguation (SimCLAD) method to better understand the acronym meanings. Specifically, we design a continual contrastive pre-training method that enhances the pre-trained model's generalization ability by learning the phrase-level contrastive distributions between true meaning and ambiguous phrases. The results on the acronym disambiguation of the scientific domain in English show that the proposed method outperforms all other competitive state-of-the-art (SOTA) methods.


翻译:缩略语模糊不清意味着在某一句子(科学文件理解的关键要点之一)中找到词典中词典中模糊缩略语的正确含义(SDU@AAAI-22)。最近,许多尝试都试图通过微调预先训练的蒙面语言模型(MLMs)来解决这一问题,以获得更好的缩略语代表;然而,在不同的背景下,缩略语含义各有不同,按不同方向绘制的缩略语在整个矢量空间上没有区别。因此,预先训练的MLMs的最初表述对于缩略语混淆任务并不理想。在本文件中,我们提议了一个简单化的Acronym Disambigiation(SimCLAD)的对比学习框架,以更好地理解缩略语的含义。具体地说,我们设计了一个持续的对比性培训前方法,通过学习在语系和模糊的词句之间的词级对比性分布,从而增强培训前模式的普及能力。英语科学域缩略语的缩略语表达结果显示,拟议的方法超越了所有其他竞争性状态-艺术方法。

0
下载
关闭预览

相关内容

AAAI2022-无需蒸馏信号的对比学习小模型训练效能研究
专知会员服务
16+阅读 · 2021年12月23日
专知会员服务
88+阅读 · 2021年6月29日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
10+阅读 · 2020年5月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
5+阅读 · 2020年10月2日
VIP会员
相关VIP内容
AAAI2022-无需蒸馏信号的对比学习小模型训练效能研究
专知会员服务
16+阅读 · 2021年12月23日
专知会员服务
88+阅读 · 2021年6月29日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
10+阅读 · 2020年5月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员