We study the limits of an information intermediary in the classical Bayesian auction, where a revenue-maximizing seller sells one item to $n$ buyers with independent private values. In addition, we have an intermediary who knows the buyers' private values, and can map these to a public signal so as to increase consumer surplus. This model generalizes the single-buyer setting proposed by Bergemann, Brooks, and Morris, who present a signaling scheme that raises the optimal consumer surplus, by guaranteeing that the item is always sold and the seller gets the same revenue as without signaling. Our work aims to understand how this result ports to the setting with multiple buyers. We likewise define the benchmark for the optimal consumer surplus: one where the auction is efficient (i.e., the item is always sold to the highest-valued buyer) and the revenue of the seller is unchanged. We show that no signaling scheme can guarantee this benchmark even for $n=2$ buyers with $2$-point valuation distributions. Indeed, no signaling scheme can be efficient while preserving any non-trivial fraction of the original consumer surplus, and no signaling scheme can guarantee consumer surplus better than a factor of $\frac{1}{2}$ compared to the benchmark. These impossibility results are existential (beyond computational), and provide a sharp separation between the single and multi-buyer settings. In light of this impossibility, we develop signaling schemes with good approximation guarantees to the benchmark. Our main technical result is an $O(1)$-approximation for i.i.d. regular buyers, via signaling schemes that are conceptually simple and computable in polynomial time. We also present an extension to the case of general independent distributions.


翻译:我们研究了古典Bayesian拍卖中信息中介的限度,在古典Bayesian拍卖中,收入最大化的卖方向有独立私人价值的美元买主出售一个物品。此外,我们还有一个了解买主私人价值的中间人,可以将这些物品映射为公共信号,以增加消费者盈余。这个模型概括了Bergemann、Brooks和Morris提出的单一买主设置,他们提出了一个提高最佳消费盈余的信号计划,保证该物品始终出售,卖方获得与不发信号的相同收入。我们的工作旨在了解这导致与多个买主一起设定的港口。我们同样地确定了最佳消费盈余的基准:拍卖效率高(即,该物品总是卖给最高价值买主),而且卖方的收入不变。我们表明,即使以美元=2的价价分配为美元买主,也保证了这一基准的可靠性。事实上,在保留原消费盈余的任何非三分之差的同时,也没有信号化的主要销售计划,并且没有信号性地确定最短的消费利率计划,比目前更值买主的准确的指数更能保证一个更好的消费盈余。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员