项目名称: 具高活性面多级二氧化钛纳米阵列的拓扑外延构筑

项目编号: No.21271190

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 吴明娒

作者单位: 中山大学

项目金额: 80万元

中文摘要: 选用具有对应于目标二氧化钛高指数面片段的含钛化合物为前驱体,在液相或液相蒸汽生长条件下,利用拓扑成核、"雕刻"生长,"复制"保留具有特定高活性面二氧化钛纳米阵列;并且在特定玻璃、陶瓷或金属基片上,事先生长具有特定取向的前驱体晶体,利用相应方法,"拓扑"复制具有高活性显露面尤其是高指数活性面阵列材料。提出具高活性显露面纳米二氧化钛阵列的生长思路和生长机理以及发掘出具有全新结构的纳米阵列。并在此基础上,利用匹配界面原理,外延生长具有新型界面结构的同质\同相、同质\异相以及具有半导体异质结的多层次树枝结构的复杂纳米阵列;利用高分辨透射电镜、电子衍射技术等研究高活性表面和界面结构,提出阵列材料的晶体成核和生长机理;研究阵列材料的光学、光电化学、(光)催化以及水解制氢等特性,提出高活性纳米材料、取向性纳米阵列制备的新思路和新途径,开发出新型界面结构和结构全新的高性能材料。

中文关键词: 二氧化钛;阵列;高活性面;界面;环境和能源

英文摘要: In this proposal, we aim to prepare TiO2 nanoarrays with highly active facets by solution chemistry or solution-vapor growth through topotactic nucleation, chemical sculpture, and replicative conversion from a precursor which contains the same segments in this crystal structure as those in aimed TiO2 nanocrystals with highly active (typically high-indexing) lattice planes. We also wish to prepare nano-arrays with highly active facets in the same way on a variety of substrates, such as glasses, ceramic plates and metals, with pre-deposited oriented precursor nanocrystals. The rational growth strategy, growth mechanism and related new nanostructured arrays will be proposed. In addition, we will try to grow dendritic TiO2-based semiconductor arrays with unreported boundaries including those between two same compounds with identical polymorph, same compounds but with different polymorphs, and hetero-junction between two semiconductors. We will try to confirm the highly active facets and the boundary planes in crystallography using high-resolution transmission electron microscopy and electron diffraction. Correspondingly, the nucleation and growth mechanism of these dendritic nanostructures will be addressed. The optical properties, photoelectrochemical (PEC) properties, (photo-)catalysis and PEC hydrogen production

英文关键词: TiO2;Nanoarrays;Highly Active Facet;Interface;Environment and Energy

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
38+阅读 · 2021年5月16日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
28+阅读 · 2021年2月19日
专知会员服务
28+阅读 · 2020年8月8日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
事理图谱的构建与应用分论坛|CNCC2021
哈工大SCIR
1+阅读 · 2021年12月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月20日
Invertible Mask Network for Face Privacy-Preserving
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
38+阅读 · 2021年5月16日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
28+阅读 · 2021年2月19日
专知会员服务
28+阅读 · 2020年8月8日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
事理图谱的构建与应用分论坛|CNCC2021
哈工大SCIR
1+阅读 · 2021年12月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员