Consider a risk portfolio with aggregate loss random variable $S=X_1+\dots +X_n$ defined as the sum of the $n$ individual losses $X_1, \dots, X_n$. The expected allocation, $E[X_i \times 1_{\{S = k\}}]$, for $i = 1, \dots, n$ and $k \in \mathbb{N}$, is a vital quantity for risk allocation and risk-sharing. For example, one uses this value to compute peer-to-peer contributions under the conditional mean risk-sharing rule and capital allocated to a line of business under the Euler risk allocation paradigm. This paper introduces an ordinary generating function for expected allocations, a power series representation of the expected allocation of an individual risk given the total risks in the portfolio when all risks are discrete. First, we provide a simple relationship between the ordinary generating function for expected allocations and the probability generating function. Then, leveraging properties of ordinary generating functions, we reveal new theoretical results on closed-formed solutions to risk allocation problems, especially when dealing with Katz or compound Katz distributions. Then, we present an efficient algorithm to recover the expected allocations using the fast Fourier transform, providing a new practical tool to compute expected allocations quickly. The latter approach is exceptionally efficient for a portfolio of independent risks.
翻译:考虑一个风险组合,其总损失随机随机值为$S=X_1 ⁇ dots +X_n美元,定义为美元个人损失的总额X_1,\dots,X_n美元。预期分配额为$E[X_i\ti times 1 ⁇ S =k ⁇ ]美元,美元=1,美元,美元=1,美元,n美元和k=in\mathbb{N}美元,这是风险分配和风险分担的重要数量。例如,利用这一价值计算在有条件的平均值风险分担规则下同侪分摊捐款和在Euler风险分配模式下分配给一行业务的资金的总和。本文件介绍了预期分配额的普通产生功能,即$[X_i\ti\ti=ti times 1 ⁇ S=k]美元,美元=1美元,美元=1美元,美元=1美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,美元,这是风险分担风险分担和风险分担的概率。然后,利用普通生成功能,我们揭示了风险分担风险分摊风险分摊风险分配的封闭的风险分配方案的新理论结果,在风险分配办法上, 快速地, 快速地分配。