We will consider the damped Newton method for strongly monotone and Lipschitz continuous operator equations in a variational setting. We will provide a very accessible justification why the undamped Newton method performs better than its damped counterparts in a vicinity of a solution. Moreover, in the given setting, an adaptive step-size strategy will be presented, which guarantees the global convergence and favours an undamped update if admissible.
翻译:我们将在一个变异的环境下考虑“牛顿”式的“牛顿”式的“坚固单质”式和“利普西茨”式连续操作方程式。 我们将提供一个非常容易理解的理由,说明为什么未加标的牛顿法在解决方案附近比“断层”式的“牛顿”法效果更好。 此外,在给定的环境下,将提出一个适应性的逐步规模战略,保证全球趋同,如果允许,则赞成未经标的更新。