Adapting upper-limb impedance (i.e., stiffness, damping, inertia) is essential for humans interacting with dynamic environments for executing grasping or manipulation tasks. On the other hand, control methods designed for state-of-the-art upper-limb prostheses infer motor intent from surface electromyography (sEMG) signals in terms of joint kinematics, but they fail to infer and use the underlying impedance properties of the limb. We present a framework that allows a human user to simultaneously control the kinematics, stiffness, and damping of a simulated robot through wrist's flexion-extension. The framework includes muscle-tendon units and a forward dynamics block to estimate the motor intent from sEMG signals, and a variable impedance controller that implements the estimated intent on the robot, allowing the user to adapt the robot's kinematics and dynamics online. We evaluate our framework with 8 able-bodied subjects and an amputee during reaching tasks performed in free space, and in the presence of unexpected external perturbations that require adaptation of the wrist impedance to ensure stable interaction with the environment. We experimentally demonstrate that our approach outperforms a data-driven baseline in terms of its ability to adapt to external perturbations, overall controllability, and feedback from participants.
翻译:适应顶层阻力( 僵硬、 阻力、 惯性) 对人类与动态环境互动以实施抓取或操纵任务至关重要。 另一方面, 用于最先进的上层假肢的控制方法, 将地表电动学信号( SEMG) 的电动信号的电动动意图从表面电动学信号中推断出来, 但是它们无法推断和使用肢体的根基阻力特性。 我们提出了一个框架, 使人类用户能够同时控制运动学、 僵硬和 模拟机器人通过手腕弹性扩展的动态环境进行屏障。 框架包括肌肉加速器和前方动态阻力块, 以估计SEMG信号的发动机意图, 以及一个可变障碍控制器, 使用户能够在线调整机器人的动能和动态。 我们用8个有机能的主体来评估我们的框架, 在自由空间执行任务时, 以及在出现意外的外部扰动状态时, 需要调整外向外的外扰动性, 以显示我们的能力, 以实验性控制整个磁变能力 。