We investigate a simple objective for nonlinear instrumental variable (IV) regression based on a kernelized conditional moment restriction (CMR) known as a maximum moment restriction (MMR). The MMR objective is formulated by maximizing the interaction between the residual and the instruments belonging to a unit ball in a reproducing kernel Hilbert space (RKHS). First, it allows us to simplify the IV regression as an empirical risk minimization problem, where the risk functional depends on the reproducing kernel on the instrument and can be estimated by a U-statistic or V-statistic. Second, based on this simplification, we are able to provide the consistency and asymptotic normality results in both parametric and nonparametric settings. Lastly, we provide easy-to-use IV regression algorithms with an efficient hyper-parameter selection procedure. We demonstrate the effectiveness of our algorithms using experiments on both synthetic and real-world data.
翻译:我们调查的是非线性工具变量(IV)回归的简单目标,其依据是被称为最大时间限制(MMR)的内嵌式有条件时刻限制(CMR),而MMR的目标是通过在复制的Hilbert室空间(RKHS)中最大限度地扩大残余和属于单球的仪器之间的相互作用来设定的。首先,它使我们能够将四级回归简化为实验性风险最小化问题,其中风险功能取决于仪器的再生产内核,并且可以由U-统计或V-统计来估算。第二,根据这一简化,我们能够在参数和非参数环境中提供一致性和无症状的正常性结果。最后,我们以高效的超参数选择程序提供容易使用的四级回归算法。我们用合成数据和实际数据实验来证明我们的算法的有效性。