We investigate the nonlinear regression problem under L2 loss (square loss) functions. Traditional nonlinear regression models often result in non-convex optimization problems with respect to the parameter set. We show that a convex nonlinear regression model exists for the traditional least squares problem, which can be a promising towards designing more complex systems with easier to train models.
翻译:我们探究了L2误差(平方误差)下的非线性回归问题。传统的非线性回归模型经常会在参数集方面导致非凸优化问题。我们展示了一种基于传统最小二乘问题的凸性非线性回归模型,这可能有助于设计更复杂的系统,使得模型更容易训练。