Learning-based point cloud registration methods can handle clean point clouds well, while it is still challenging to generalize to noisy and partial point clouds. To this end, we propose a novel framework for noisy and partial point cloud registration. By introducing a neural implicit function representation, we replace the problem of rigid registration between point clouds with a registration problem between the point cloud and the neural implicit function. We then alternately optimize the implicit function representation and the registration between the implicit function and point cloud. In this way, point cloud registration can be performed in a coarse-to-fine manner. Since our method avoids computing point correspondences, it is robust to the noise and incompleteness of point clouds. Compared with the registration methods based on global features, our method can deal with surfaces with large density variations and achieve higher registration accuracy. Experimental results and comparisons demonstrate the effectiveness of the proposed framework.


翻译:学习为噪声和不完整点云进行配准是一个挑战。为此,我们提出了一种新的框架。通过引入神经隐式函数表示,我们将点云之间的刚性配准问题替换为点云与神经隐式函数之间的配准问题。然后我们交替优化隐式函数表示和隐式函数与点云之间的配准问题。因此,点云配准可以以由粗到细的方式进行。由于我们的方法避免了计算点对应关系,因此它对点云的噪声和不完整性具有鲁棒性。与基于全局特征的配准方法相比,我们的方法可以处理相对密度变化较大的曲面,并实现更高的配准精度。实验结果和比较证明了所提出的框架的有效性。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2021年6月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
【泡泡一分钟】用于视角可变重定位的语义地图构建
泡泡机器人SLAM
19+阅读 · 2019年10月21日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员